CALCEPH - Python language
Release 4.0.5

M. Gastineau, J. Laskar, A. Fienga, H. Manche

Jun 03, 2025

CONTENTS

Introduction 3
Installation 5
2.1 Instructions L e 5
211 Usingpip « o v v o e e e e e e e e e e 5
2.1.2 Using Anaconda e 6
Library interface 7
3.1 Asimple example program oL e e e e e e e e e e e e e e e e 7
3.2 Modules . ..o e e e e e 7
33 TYPES « o o e e e e e e e e e e e e 7
3.4 0 CONStaNLS . . . v o v e e e e e e e e e e e e e 8
Multiple file access functions 11
4.1 TIMENOES . . . v v v v o e 11
42 Thread notes L e e e e e 11
43 USAZE . . v v o e e e e e e e e e e e e e e e e 11
44 Functions e e e 12
44.1 calcephpy.CalcephBin.open. L o 12
4.4.2 calcephpy.CalcephBin.prefetch 13
4.4.3 calcephpy.CalcephBin.isthreadsafe 13
4.4.4 calcephpy.CalcephBin.compute e e 14
4.4.5 calcephpy.CalcephBin.compute_unit e 15
4.4.6 calcephpy.CalcephBin.orient unit Lo .. 17
4477 calcephpy.CalcephBin.rotangmom_unit 0oL, 18
4.4.8 calcephpy.CalcephBin.compute_order 20
4.4.9 calcephpy.CalcephBin.orient_order. 22
4.4.10 calcephpy.CalcephBin.rotangmom_order. vt vt 24
4.4.11 calcephpy.CalcephBin.getconstant 25
4.4.12 calcephpy.CalcephBin.getconstantsd L oL, 26
4.4.13 calcephpy.CalcephBin.getconstantvd 26
4.4.14 calcephpy.CalcephBin.getconstantss oL 27
4.4.15 calcephpy.CalcephBin.getconstantvs o v v v v vt e e e e e 27
4.4.16 calcephpy.CalcephBin.getconstantcount oo 27
4.4.17 calcephpy.CalcephBin.getconstantindex 28
4.4.18 calcephpy.CalcephBin.getfileversion 28
4.4.19 calcephpy.CalcephBin.getidbyname 29
4.420 calcephpy.CalcephBin.getnamebyidss e 30
4.4.21 calcephpy.CalcephBin.gettimescale 30
4.4.22 calcephpy.CalcephBin.gettimespan Lo ... 31

4.4.23

calcephpy.CalcephBin.getpositionrecordcount

4.4.24 calcephpy.CalcephBin.getpositionrecordindex
4.4.25 calcephpy.CalcephBin.getpositionrecordindex2
4.4.26 calcephpy.CalcephBin.getorientrecordcount
4.4.27 calcephpy.CalcephBin.getorientrecordindex
4.4.28 calcephpy.CalcephBin.getorientrecordindex2,
4.4.29 calcephpy.CalcephBin.close e

Error functions

S Usage e e e

5.2 calcephpy.seterrorhandler L e e e e e

Miscellaneous functions
6.1 calcephpy.getmaxsupportedorder L. e
6.2 calcephpy.getversion_Str i i e e e e e e e e e e e e e e e e

NAIF identification numbers

7.1 Sun and planetary baryCenterst i e e e e e e e e e e e e e e e e e e
7.2 Coordinate Time ephemerides i e e e e e e
7.3 Planet centers and satellites L L e e e

7.4 Comets

Release notes

Reporting bugs

10 CALCEPH Library Copying conditions

37
37
38

39
39
39

41
41
41
42
45

49

55

57

CALCEPH - Python language, Release 4.0.5

This manual documents how to install and use the CALCEPH Library using the Python interface.
Authors : M. Gastineau, J. Laskar, A. Fienga, H. Manche

CONTENTS 1

CALCEPH - Python language, Release 4.0.5

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The CALCEPH Library is designed to access the binary planetary ephemeris files, such INPOPxx and JPL DExxx
ephemeris files, (called 'original JPL binary' or 'INPOP 2.0 or 3.0 binary' ephemeris files in the next sections) and the
SPICE kernel files (called 'SPICE' ephemeris files in the next sections). At the moment, supported SPICE files are :

* text Planetary Constants Kernel (KPL/PCK) files
* binary PCK (DAF/PCK) files.

* binary SPK (DAF/SPK) files containing segments of type 1,2, 3,5, 8,9, 12, 13, 14, 17, 18, 19, 20, 21, 102, 103
and 120.

¢ meta kernel (KPL/MK) files.
* frame kernel (KPL/FK) files. Only a basic support is provided.

This library provides a C interface and, optionally, the Fortran 77 or 2003, Python and Octave/Matlab interfaces, to be
called by the application.

This library could access to the following ephemeris
* INPOPO6 or later
* DE200
* DEA403 or later
* EPM2011 or later

Although computers have different endianess (order in which integers are stored as bytes in computer memory), the
library could handle the binary ephemeris files with any endianess. This library automatically swaps the bytes when it
performs read operations on the ephemeris file.

The internal format of the original JPL binary planetary ephemeris files is described in the paper :

* David Hoffman : 1998, A Set of C Utility Programs for Processing JPL. Ephemeris Data, ftp://ssd.jpl.nasa.gov/
pub/eph/export/C-versions/hoffman/EphemUtil Ver0. 1 .tar

The TNPOP 2.0 binary' file format for planetary ephemeris files is described in the paper :

* M. Gastineau, J. Laskar, A. Fienga, H. Manche : 2012, INPOP binary ephemeris file format - version 2.0 https:
/Iwww.imcce.fr/inpop/inpop_file_format_2_0.pdf

The INPOP 3.0 binary' file format for planetary ephemeris files is described in the paper :

e M. Gastineau, J. Laskar, A. Fienga, H. Manche : 2017, INPOP binary ephemeris file format - version 3.0 https:
/lwww.imcce.fr/inpop/inpop_file_format_3_0.pdf

ftp://ssd.jpl.nasa.gov/pub/eph/export/C-versions/hoffman/EphemUtilVer0.1.tar
ftp://ssd.jpl.nasa.gov/pub/eph/export/C-versions/hoffman/EphemUtilVer0.1.tar
https://www.imcce.fr/inpop/inpop_file_format_2_0.pdf
https://www.imcce.fr/inpop/inpop_file_format_2_0.pdf
https://www.imcce.fr/inpop/inpop_file_format_3_0.pdf
https://www.imcce.fr/inpop/inpop_file_format_3_0.pdf

CALCEPH - Python language, Release 4.0.5

4 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION

The following section describes the installation of the Python interface of the library. If you want to install the interface
for another programming language, you have to follow the instructions of the manual of that language.

2.1 Instructions
The python interface of the library should be installed using the package management system pip on all operating
systems : Windows and Unix-like system (Linux, macOS, BSD, Cygwin, ...).

A python interpreter, compliant at least with Python 3.0 specifications, and the package Cython, setuptools and numpy
are required to install the python interface of the library.

Some Linux distributions require the installation development tools of the python software. The name of this package
may change on other Linux distributions or operating systems :

* Debian or Ubuntu distributions : package python3-dev and python-dev-is-python3 are required.
* Opensuse distribution : package python3-dev is required.
¢ Fedora or RedHat distributions : python3-devel is required.
In addition you need the software CMake and a C compiler :
* On Unix-like operating systems (Linux, MacOS X, ...), you should install gcc or clang.

* On windows operating system, you need the Microsoft Visual C++ compiler. If you don't
have a C compiler already installed, you can download the community edition of visual studio
https://visualstudio.microsoft.com/fr/vs/features/cplusplus/. ~ Before the execution of the next steps, you
should execute the following line in the same terminal. You may have to adjust the path according to your
version of the Visual studio compiler.

"C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\
—Build\vcvars64.bat"

2.1.1 Using pip

Depending on your python installation, the command pip may be replaced by pip3. If you use the distribution anaconda,
you should prefer to use the instruction from the Anaconda section.

The steps are :

¢ Install the requirements

[pip install Cython setuptools numpy]

* Install the library

CALCEPH - Python language, Release 4.0.5

[pip install calcephpy }

2.1.2 Using Anaconda
Depending on your anaconda installation, the command pip may be replaced by pip3.
The steps are :

¢ Install the gcc compiler from the Anaconda compiler tools :

See the instruction on https://docs.conda.io/projects/conda-build/en/latest/resources/compiler-
tools.html

For example, on the operating system Linux, it will be :

[conda install gcc_linux-64 cmake make J

* Install the other requirements

{conda install Cython setuptools numpy J

e Install the library

[pip install calcephpy]

6 Chapter 2. Installation

CHAPTER
THREE

LIBRARY INTERFACE

3.1 A simple example program

The following example program shows the typical usage of the Python interface.

Other examples using the Python interface can be found in the directory examples of the library sources.

from calcephpy import *

peph = CalcephBin.open('examplel.dat")

AU = peph.getconstant ("AU")

jd® = 2451542

dt = 0.5

PV = peph.compute_unit(jd®, dt, NaifId.MOON, NaifId.EARTH,
Constants.UNIT_KM+Constants.UNIT_SEC+Constants.USE_NAIFID)

print (PV)

peph.close()

3.2 Modules

It is designed to work with Python interpreters compliant with the Python 2.6 or later and Python 3.0 or later.

All declarations needed to use CALCEPH Library are collected in the module calcephpy. You should import this
module:

[from calcephpy import * }

If you receive the following message ImportError: No module named calcephpy and if the config-
uration option enable-python-package-system and enable-python-package-user was not set, the environment
variable PYTHONPATH should be set to the right location of the CALCEPH python package (e.g.,
PYTHONPATH=/ust/local/lib64/python3.4/site-packages/:SPYTHONPATH) in your shell initialization file (e.g.,
~/.bash_login or ~/.profile), in order that the python interpreter finds the CALCEPH python package.

Relative to C or Fortran interface, the prefixes calceph_, CALCEPH_, NAIFID_ are deleted for the naming convention
of the functions, constants and NAIF identification numbers.

3.3 Types

calcephpy.CalcephBin

This type contains all information to access a single ephemeris file or a set of ephemeris files to be used together.

CALCEPH - Python language, Release 4.0.5

calcephpy.NaifId

This type contains the NAIF identification numbers.

calcephpy.Constants

This type contains all constants defined in the library, except the NAIF identification numbers.

3.4 Constants

The following constants are defined in the class Constants (or calcephpy.Constants).

VERSION_MAJOR

This integer constant defines the major revision of this library. It can be used to distinguish different releases of this
library.

VERSION_MINOR

This integer constant defines the minor revision of this library. It can be used to distinguish different releases of this
library.

VERSION_PATCH

This integer constant defines the patch level revision of this library. It can be used to distinguish different releases of
this library.

VERSION_STRING

This string is the version of the library, which can be compared to the result of calceph_getversion to check at run time
if the header file and library used match:

Note: Obtaining different strings is not necessarily an error, as in general, a program compiled with some old CALCEPH
version can be dynamically linked with a newer CALCEPH library version (if allowed by the operating system).

ASTEROID

This integer defines the offset value for the asteroids that must be used as target or center for the computation functions,
such as calcephpy.CalcephBin. compute().

The following constants specify in which units are expressed the output of the computation functions, such as
calcephpy.CalcephBin.compute_unit() :

UNIT_AU

This integer defines that the unit of the positions and velocities is expressed in astronomical unit.
UNIT_KM

This integer defines that the unit of the positions and velocities is expressed in kilometer.
UNIT_DAY

This integer defines that the unit of the velocities or the quantity TT-TDB or TCG-TCB is expressed in day (one
day=86400 seconds).

UNIT_SEC

This integer defines that the unit of the velocities or the quantity TT-TDB or TCG-TCB is expressed in second.
UNIT_RAD

This integer defines that the unit of the angles is expressed in radian.

8 Chapter 3. Library interface

CALCEPH - Python language, Release 4.0.5

OUTPUT_EULERANGLES

This integer defines that the output array contains the euler angles.

OUTPUT_NUTATIONANGLES

This integer defines that the output array contains the nutation angles.

USE_NATFID

This integer defines that the NAIF identification numbers are used as target or center for the computation functions,
such as calcephpy.CalcephBin.compute_unit().

The following constants specify the type of segments for the functions, such as calcephpy.
getmaxsupportedorder() :

SEGTYPE_ORIG_O®

This integer defines the type of segment for the original INPOP/JPL DE file format.
SEGTYPE_SPK_1

SEGTYPE_SPK_2
SEGTYPE_SPK_3
SEGTYPE_SPK_5
SEGTYPE_SPK_8
SEGTYPE_SPK_9
SEGTYPE_SPK_12
SEGTYPE_SPK_13
SEGTYPE_SPK_14
SEGTYPE_SPK_17
SEGTYPE_SPK_18
SEGTYPE_SPK_19
SEGTYPE_SPK_20
SEGTYPE_SPK_21
SEGTYPE_SPK_102
SEGTYPE_SPK_103
SEGTYPE_SPK_120

This integer defines the type of segments (1, 2, 3, 5, 8, 9, 12, 13, 14, 17, 18, 19, 20, 21, 102, 103 and 120) for the
SPICE Kernel files.

3.4. Constants 9

CALCEPH - Python language, Release 4.0.5

10 Chapter 3. Library interface

CHAPTER
FOUR

MULTIPLE FILE ACCESS FUNCTIONS

The following group of functions should be the preferred method to access to the library. They allow to access to
multiple ephemeris files at the same time, even by multiple threads.

When an error occurs, these functions execute error handlers according to the behavior defined by the function
calcephpy.seterrorhandler().

4.1 Time notes

The functions calcephpy.CalcephBin.compute(), calcephpy.CalcephBin.compute_unit(), calcephpy.
CalcephBin.compute_order(), calcephpy.CalcephBin.orient_unit(), ... only accept a date expressed in
the same timescale as the ephemeris files, which can be retrieved using the function calcephpy.CalcephBin.
gettimescale(). Ephemeris files are generally expressed using the timescale TDB. If a date, expressed in the TT
(Terrestrial Time) timescale, is supplied to them, these functions will return an erroneous position of the order of sev-
eral tens of meters for the planets. If a date, expressed in the Coordinated Universal Time (UTC), is supplied to them,
these functions will return a very large erroneous position over several thousand kilometers for the planets.

4.2 Thread notes

If the standard I/O functions such as fread are not reentrant then the CALCEPH I/O functions using them will not be
reentrant either.

It's not safe for two threads to call the functions with the same object of type CalcephBin if and only if the function
calcephpy.CalcephBin.isthreadsafe () returns a non-zero value. A previous call to the function calcephpy.
CalcephBin.prefetch() is required for the function calcephpy.CalcephBin.isthreadsafe () to return a non-
zero value.

It's safe for two threads to access simultaneously to the same ephemeris file with two different objects of type
CalcephBin. In this case, each thread must open the same file.

4.3 Usage

The following examples, that can be found in the directory examples of the library sources, show the typical usage of
this group of functions.

The example in Python language is pymultiple.py.

11

CALCEPH - Python language, Release 4.0.5

4.4 Functions

4.4.1 calcephpy.CalcephBin.open
calcephpy.CalcephBin.open(filename) — eph

Parameters
filename (str) -- pathname of the file

Returns
ephemeris descriptor

Return type
calcephpy.CalcephBin

This function opens the file whose pathname is the string pointed to by filename, reads the two header blocks of this file
and returns an ephemeris descriptor associated to it. This file must be compliant to the format specified by the 'original
JPL binary', INPOP 2.0 binary' or 'SPICE' ephemeris file. At the moment, supported SPICE files are the following :

* text Planetary Constants Kernel (KPL/PCK) files
¢ binary PCK (DAF/PCK) files.

* binary SPK (DAF/SPK) files containing segments of type 1, 2, 3, 5, 8,9, 12, 13, 14, 17, 18, 19, 20, 21, 102, 103
and 120.

¢ meta kernel (KPL/MK) files.
* frame kernel (KPL/FK) files. Only a basic support is provided.

Just after the call of calcephpy.CalcephBin.open(), the function calcephpy.CalcephBin.prefetch() should
be called to accelerate future computations.

The function calcephpy.CalcephBin.close () must be called to free allocated memory by this function.

The following example opens the ephemeris file examplel.dat

from calcephpy import *
peph = CalcephBin.open("examplel.dat")
... computation ...

peph.close()

noindex

calcephpy.CalcephBin.open(array_filename) — eph

Parameters
array_filename (1ist) -- array of pathname of the files

Returns
ephemeris descriptor

Return type
calcephpy.CalcephBin

This function opens n files whose pathnames are the string pointed to by array_filename, reads the header blocks of
these files and returns a single ephemeris descriptor associated to them.

12 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

These files must have the same type (e.g., all files are SPICE files or original JPL files). This file must be compliant to
the format specified by the 'original JPL binary', TNPOP 2.0 or 3.0 binary' or 'SPICE' ephemeris file. At the moment,
supported SPICE files are the following :

* text Planetary Constants Kernel (KPL/PCK) files
¢ binary PCK (DAF/PCK) files.

* binary SPK (DAF/SPK) files containing segments of type 1, 2, 3,5, 8,9, 12, 13, 14, 17, 18, 19, 20, 21, 102, 103
and 120.

¢ meta kernel (KPL/MK) files.
* frame kernel (KPL/FK) files. Only a basic support is provided.

The single descriptor internally maintains a table to respond to the following queries for computing the position-velocity
vector between bodies present in these different files.

Just after the call of calcephpy.CalcephBin.open(), the function calcephpy.CalcephBin.prefetch() should
be called to accelerate future computations.

The function calcephpy.CalcephBin.close () must be called to free allocated memory by this function.

The following example opens the ephemeris file examplel.bsp and examplel.tpc

from calcephpy import CalcephBin
peph = CalcephBin.open(['examplel.bsp', 'examplel.tpc'])

... computation ...

peph.close()

4.4.2 calcephpy.CalcephBin.prefetch
calcephpy.CalcephBin.prefetch()

This function prefetches to the main memory all files associated to the ephemeris descriptor. This prefetching oper-
ation will accelerate the further computations performed with calcephpy.CalcephBin.compute(), calcephpy.
CalcephBin. compute_unit(), calcephpy.CalcephBin. compute_order(), calcephpy.CalcephBin.
orient_unit(),

It requires that the file is smaller than the main memory. If multiple threads (e.g. threads of openMP or Posix Pthreads)
prefetch the data for the same ephemeris file, the used memory will remain the same as if the prefetch operation was
done by a single thread if and if the endianess of the file is the same as the computer and if the operating system, such
as Linux, MacOS X other unix, supports the function mmap.

4.4.3 calcephpy.CalcephBin.isthreadsafe
calcephpy.CalcephBin.isthreadsafe()

This function returns 1 if multiple threads can access the same ephemeris ephemeris descriptor, otherwise 0.

A previous call to the function calcephpy.CalcephBin.prefetch() is required, and the library should be
compiled with --enable-thread=yes on Unix-like operating system, for the function calcephpy.CalcephBin.
isthreadsafe() to return a non-zero value. If the file is not encoded with the same endian as the current hardware,
then function may return 0.

If this function returns 1, several threads may use the same ephemeris descriptor for the computational functions
calcephpy.CalcephBin.compute(), It allows to use the same object for the parallel loops.

4.4. Functions 13

CALCEPH - Python language, Release 4.0.5

4.4.4 calcephpy.CalcephBin.compute
calcephpy.CalcephBin. compute (JDO, time, target, center) — PV

Parameters
* JDO (float/list/numpy.ndarray) -- Integer part of the Julian date (TDB or TCB)
e time (float/list/numpy.ndarray) -- Fraction part of the Julian date (TDB or TCB)

* target (int) -- The body or reference point whose coordinates are required (see the list,
below).

* center (int) -- The origin of the coordinate system (see the list, below). If target is 14, 15,
16 or 17 (nutation, libration, TT-TDB or TCG-TCB), center must be 0.

Returns
Depending on the target value, an array to receive the cartesian position (x,y,z) and the velocity
(xdot, ydot, zdot), or a time scale transformation value, or the angles of the librations of the Moon
and their derivatives, or the nutation angles and their derivatives.

Return type
list

This function reads, if needed, in the ephemeris file self and interpolates a single object, usually the position and velocity
of one body (farget) relative to another (center) for the time JDO+time and stores the results to PV. The ephemeris file
self must have been previously opened with the function calcephpy.CalcephBin.open().

The returned array PV has the following properties

* If the target is TT-TDB, only the first element of this array will get the result. The time scale transformation
TT-TDB is expressed in seconds.

o If the target is TCG-TCB, only the first element of this array will get the result. The time scale transformation
TCG-TCB is expressed in seconds.

* If the target is Librations, the array contains the angles of the librations of the Moon and their derivatives. The
angles of the librations of the Moon are expressed in radians and their derivatives are expressed in radians per
day.

* If the target is Nutations, the array contains the nutation angles and their derivatives. The nutation angles are
expressed in radians and their derivatives are expressed in radians per day.

» Otherwise the returned values is the cartesian position (x,y,z), expressed in Astronomical Unit (au), and the
velocity (xdot, ydot, zdot), expressed in Astronomical Unit per day (au/day).

If JDO and time are list or NumPy's array (1D) of double-precision floating-point values, the returned array PV is a
list of 6 arrays. Each array contain a single component of position or velocity (e.g., PV[0] contains the coordinate X,
PV[1] contains the coordinate Y, ...) .

The date (JDO, time) should be expressed in the same timescale as the ephemeris files, which can be retrieved using the
function calcephpy.CalcephBin.gettimescale(). To get the best numerical precision for the interpolation, the
time is splitted in two floating-point numbers. The argument JDO should be an integer and time should be a fraction of
the day. But you may call this function with time=0 and JDO, the desired time, if you don't take care about numerical
precision.

A Warning

If a date, expressed in the Coordinated Universal Time (UTC), is supplied to this function, a very large erroneous
position will be returned.

14 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

The possible values for farget and center are :

value meaning

1 Mercury Barycenter

2 Venus Barycenter

3 Earth

4 Mars Barycenter

5 Jupiter Barycenter

6 Saturn Barycenter

7 Uranus Barycenter

8 Neptune Barycenter

9 Pluto Barycenter

10 Moon

11 Sun

12 Solar Sytem barycenter
13 Earth-moon barycenter
14 Nutation angles

15 Librations

16 TT-TDB

17 TCG-TCB

asteroid number + CALCEPH_ASTEROID asteroid

These accepted values by this function are the same as the value for the JPL function PLEPH, except for the values
TT-TDB, TCG-TCB and asteroids.

For example, the value "CALCEPH_ASTEROID+4" for target or center specifies the asteroid Vesta.

The following example prints the heliocentric coordinates of Mars at time=2442457.5 and at 2442457.9

from calcephpy import *

def printcoord(PV,name):
print(' :\n{7\n'. format(name,PV))

jd0=2442457

dt1=0.5E0
dt2=0.9E0

peph = CalcephBin.open('examplel.dat")

PV1 = peph.compute(jd®, dtl, 4, 11)
printcoord(PV1, "heliocentric coordinates of Mars")

PV2 = peph.compute(jd0®, dt2, 4, 11)
printcoord(PV2, "heliocentric coordinates of Mars")

peph.close()

4.4.5 calcephpy.CalcephBin.compute_unit
calcephpy.CalcephBin.compute_unit(JDO, time, target, center, unit) — PV

Parameters

4.4. Functions 15

CALCEPH - Python language, Release 4.0.5

JDO® (float/list/numpy.ndarray) -- Integer part of the Julian date (TDB or TCB)

time (float/list/numpy.ndarray) -- Fraction part of the Julian date (TDB or TCB)

target (int) -- The body or reference point whose coordinates are required. The numbering
system depends on the parameter unit.

* center (int) -- The origin of the coordinate system. The numbering system depends on the
parameter unit.

e unit (int) -

The units of PV.

This integer is a sum of some unit constants (CALCEPH_UNIT_???) and/or the constant
USE_NAIFID.

If the unit contains USE_NAIFID, the NAIF identification numbering system is used for the
target and the center (NAIF identification numbers for the list).

If the unit doesnot contain USE_NAIFID, the old number system is used for the target and
the center (see the list in the function calcephpy.CalcephBin. compute()).

Returns
Depending on the target value, an array to receive the cartesian position (x,y,z) and the velocity
(xdot, ydot, zdot), or a time scale transformation value, or the angles of the librations of the Moon
and their derivatives, or the nutation angles and their derivatives.

Return type
list
This function is similar to the function calcephpy.CalcephBin.compute (), except that the units of the output are

specified.

This function reads, if needed, in the ephemeris file self and interpolates a single object, usually the position and velocity
of one body (farget) relative to another (center) for the time JDO+time and stores the results to PV. The ephemeris file
self must have been previously opened with the function calcephpy.CalcephBin.open(). The output values are
expressed in the units specified by unit.

This function checks the units if invalid combinations of units are given to the function.

The date (JDO, time) should be expressed in the same timescale as the ephemeris files, which can be retrieved using
the function calcephpy.CalcephBin.gettimescale().

A\ Warning

If a date, expressed in the Coordinated Universal Time (UTC), is supplied to this function, a very large erroneous
position will be returned.

The returned array PV has the following properties
* If the target is the time scale transformation TT-TDB, only the first element of this array will get the result.
* If the target is the time scale transformation TCG-TCB, only the first element of this array will get the result.
« If the target is Librations, the array contains the angles of the librations of the Moon and their derivatives.
« If the target is Nutations, the array contains the nutation angles and their derivatives.
» Otherwise the returned value is the cartesian position (X,y,z) and the velocity (xdot, ydot, zdot).

If JDO and time are list or NumPy's array (1D) of double-precision floating-point values, the returned array PV is a
list of 6 arrays. Each array contain a single component of position or velocity (e.g., PV[0] contains the coordinate X,
PV[1] contains the coordinate Y, ...) .

16 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

The values stored in the array PV are expressed in the following units
* The position and velocity are expressed in Astronomical Unit (au) if unit contains UNIT_AU.

» The position and velocity are expressed in kilometers if unit contains UNIT_KHM.

* The velocity, TT-TDB, TCG-TCB, the derivatives of the angles of the nutation, or the derivatives of the librations

of the Moon or are expressed in days if unit contains UNIT_DAY.

 The velocity, TT-TDB, TCG-TCB, the derivatives of the angles of the nutation, or the derivatives of the librations

of the Moon are expressed in seconds if unit contains UNIT_SEC.

* The angles of the librations of the Moon or the nutation angles are expressed in radians if unit contains UNIT_RAD.

For example, to get the position and velocities expressed in kilometers and kilometers/seconds, the unit must be set to

UNIT_KM + UNIT_SEC.

The following example prints the heliocentric coordinates of Mars at time=2442457.5

from calcephpy import *

def printcoord(PV,name) :
print(’ :\n{7/\n'.format (name,PV))

jd0=2442457
dt=0.5EQ

peph = CalcephBin.open("examplel.dat")

PV1 = peph.compute_unit(jd®, dt, 4, 11, Constants.UNIT_KM+Constants.UNIT_SEC)
printcoord(PV1, "heliocentric coordinates of Mars")

PV2 = peph.compute_unit(jd®, dt, NaifId.MARS_BARYCENTER, NaifId.SUN,
Constants.UNIT_KM+Constants.UNIT_SEC+Constants.USE_NAIFID)

printcoord(PV2, "heliocentric coordinates of Mars")

peph.close()

4.4.6 calcephpy.CalcephBin.orient_unit
calcephpy.CalcephBin.orient_unit (JDO, time, target, unit) — PV

Parameters
* JDO (float/list/numpy.ndarray) -- Integer part of the Julian date (TDB or TCB)
* time (float/list/numpy.ndarray) -- Fraction part of the Julian date (TDB or TCB)

* target (int) -- The body whose orientations are requested. The numbering system depends

on the parameter unit.
* unit (int) --

The units of PV.

This integer is a sum of some unit constants (CALCEPH_UNIT_???) and/or the constant

USE_NAIFID.

If the unit contains USE_NAIFID, the NAIF identification numbering system is used for the

target (NAIF identification numbers for the list).

If the unit does not contain USE_NAIFID, the old number system is used for the target (see

the list in the function calcephpy.CalcephBin. compute()).

4.4. Functions

17

CALCEPH - Python language, Release 4.0.5

Returns
An array to receive the euler angles, or nutation angles, and their derivatives for the orientation
of the body.

Return type
list

This function reads, if needed, in the ephemeris file self and interpolates the orientation of a single body (target) for
the time JDO+time and stores the results to PV. The ephemeris file self must have been previously opened with the
function calcephpy.CalcephBin.open(). The output values are expressed in the units specified by unit.

The date (JDO, time) should be expressed in the same timescale as the ephemeris files, which can be retrieved using
the function calcephpy.CalcephBin.gettimescale().

This function checks the units if invalid combinations of units are given to the function.
The returned array PV has the following properties

e If unit contains OUTPUT_NUTATIONANGLES, the array contains the nutation angles and their derivatives for the
orientation of the body. At the present moment, only the nutation for the earth are supported in the original DE
files.

e If unit contains OUTPUT_EULERANGLES, or doesnot contain OUTPUT_NUTATIONANGLES, the array contains the
euler angles and their derivatives for the orientation of the body.

If JDO and time are list or NumPy's array (1D) of double-precision floating-point values, the returned array PV is a list
of 6 arrays. Each array contain a single component of orientation.

The values stored in the array PV are expressed in the following units
* The derivatives of the angles are expressed in days if unit contains UNIT_DAY.
* The derivatives of the angles are expressed in seconds if unit contains UNIT_SEC.
* The angles and their derivatives are expressed in radians if unit contains UNIT_RAD.

For example, to get the nutation angles of the Earth and their derivatives expressed in radian and radian/seconds using
the NAIF identification numbering system, the target must be set to NAIFID_EARTH and the unit must be set to
OUTPUT_NUTATIONANGLES + UNIT_RAD + UNIT_SEC.

The following example prints the angles of libration of the Moon at time=2442457.5

from calcephpy import *

jd0=2442457
dt=0.5E0

peph = CalcephBin.open("examplel.dat")

PV = peph.orient_unit(jd®, dt, NaifId.MOON,
Constants.USE_NAIFID+Constants.UNIT_RAD+Constants.UNIT_SEC)

print (PV)

peph.close()

4.4.7 calcephpy.CalcephBin.rotangmom_unit
calcephpy.CalcephBin.rotangmom_unit (JDO, time, target, unit) — PV

Parameters

18 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

JDO (float) -- Integer part of the Julian date (TDB or TCB)

time (float) -- Fraction part of the Julian date (TDB or TCB)

target (int) -- The body whose orientations are requested. The numbering system depends
on the parameter unit.

e unit (int) -

The units of PV.

This integer is a sum of some unit constants (CALCEPH_UNIT_???) and/or the constant
USE_NAIFID.

If the unit contains USE_NAIFID, the NAIF identification numbering system is used for the
target (NAIF identification numbers for the list).

If the unit does not contain USE_NAIFID, the old number system is used for the target (see
the list in the function calcephpy.CalcephBin.compute()).

Returns
An array to receive the angular momentum due to its rotation, divided by the product of the mass
and of the square of the radius, and the derivatives, of the body.

Return type
list

This function reads, if needed, in the ephemeris file self and interpolates the angular momentum vector due to the
rotation of the body, divided by the product of the mass m and of the square of the radius R, of a single body (target)
for the time JDO+time and stores the results to PV. The ephemeris file self must have been previously opened with the
function calcephpy.CalcephBin.open(). The angular momentum L , due to the rotation of the body, is defined as
the product of the inertia matrix I by the angular velocity vector w. So the returned value is L/(mR?) = (Iw)/(mR?)

The date (JDO, time) should be expressed in the same timescale as the ephemeris files, which can be retrieved using
the function calcephpy.CalcephBin.gettimescale().

The output values are expressed in the units specified by unit.
This function checks the units if invalid combinations of units are given to the function.
The values stored in the array PV are expressed in the following units
* The angular momentum and its derivative are expressed in days if unit contains UNIT_DAY.
* The angular momentum and its derivative are expressed in seconds if unit contains UNIT_SEC.

The following example prints the angular momentum, due to its rotation, for the Earth at time=2451419.5

from calcephpy import *

jd0=2451419
dt=0.5EQ

peph = CalcephBin.open("example2_rotangmom.dat")

G = peph.rotangmom_unit(jd®, dt, NaifId.EARTH,
Constants.USE_NATFID+Constants.UNIT_SEC)

print(G)

peph.close()

4.4. Functions 19

CALCEPH - Python language, Release 4.0.5

4.4.8 calcephpy.CalcephBin.compute_order
calcephpy.CalcephBin.compute_order (JDO, time, target, center, unit, order) — PVAJ

Parameters

* JDO (float/list/numpy.ndarray) -- Integer part of the Julian date (TDB or TCB)

time (float/list/numpy.ndarray) -- Fraction part of the Julian date (TDB or TCB)

target (int) -- The body or reference point whose coordinates are required. The numbering
system depends on the parameter unit.

* center (int) -- The origin of the coordinate system. The numbering system depends on the
parameter unit.

* unit (int) --

The units of PVAJ.

This integer is a sum of some unit constants (CALCEPH_UNIT_???) and/or the constant
USE_NAIFID.

If the unit contains USE_NAIFID, the NAIF identification numbering system is used for the
target and the center (NAIF identification numbers for the list).

If the unit doesnot contain USE_NAIFID, the old number system is used for the target and
the center (see the list in the function calcephpy.CalcephBin.compute()).

e order (int) -- The order of derivatives

= 0, only the position is computed. The first three numbers of PVAJ are valid for the
results.

=1, only the position and velocity are computed. The first six numbers of PVAJ are valid
for the results.

=2, only the position, velocity and acceleration are computed. The first nine numbers of
PVALJ are valid for the results.

= 3, the position, velocity and acceleration and jerk are computed. The first twelve num-
bers of PVAJ are valid for the results.

If order equals to 1, the behavior of calcephpy.CalcephBin. compute_order() is the
same as calcephpy.CalcephBin.compute_unit().

Returns
Depending on the target value, an array to receive the cartesian position (x,y,z), the velocity (xdot,
ydot, zdot), the acceleration and the jerk, or a time scale transformation value, or the angles of the
librations of the Moon and their successive derivatives, or the nutation angles and their successive
derivatives.

Return type
list
This function is similar to the function calcephpy.CalcephBin.compute_unit (), except that the order of the com-
puted derivatives is specified.

This function reads, if needed, in the ephemeris file self and interpolates a single object, usually the position and their
derivatives of one body (target) relative to another (center) for the time JDO+time and stores the results to PVAJ. The
ephemeris file sel/f must have been previously opened with the function calcephpy.CalcephBin.open(). The order
of the derivatives are specified by order. The output values are expressed in the units specified by unit.

The returned array PVAJ has the following properties

20 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

* If the target is the time scale transformation TT-TDB, only the first elements of each component will get the
result.

« If the target is the time scale transformation 7CG-TCB, only the first elements of each component will get the
result.

« If the target is Librations, the array contains the angles of the librations of the Moon and their successive deriva-
tives.

* If the target is Nutations, the array contains the nutation angles and their successive derivatives.

* Otherwise the returned value is the cartesian position (x,y,z), the velocity (xdot, ydot, zdot), the jerk and the
acceleration.

The returned array PVAJ must be large enough to store the results.
* PVAIJ[1:3] contain the position (X,y,z) and is always valid.
* PVAIJ[4:6] contain the velocity (dx/dt,dy/dt,dz/dt) and is only valid if order is greater or equal to 1.

* PVAIJ[7:9] contain the acceleration (d*2x/dt"2,d"2y/dt"2,d"2z/dt"2) and is only valid if order is greater or equal
to 2.

* PVAJ[10:12] contain the jerk (d*3x/dt*3,d*3y/dt*3,d*3z/dt"3) and is only valid if order is equal to 3.

If JDO and time are list or NumPy's array (1D) of double-precision floating-point values, the returned array PVAJ is
a list of 3*(order+1) arrays. Each array contain a single component of position, velocity ... (e.g., PV[0] contains the
coordinate X, PV[1] contains the coordinate Y, ...) .

The date (JDO, time) should be expressed in the same timescale as the ephemeris files, which can be retrieved using
the function calcephpy.CalcephBin.gettimescale().

A Warning

If a date, expressed in the Coordinated Universal Time (UTC), is supplied to this function, a very large erroneous
position will be returned.

The values stored in the array PVAJ are expressed in the following units
 The position, velocity, acceleration and jerk are expressed in Astronomical Unit (au) if unit contains UNIT_AU.
* The position, velocity, acceleration and jerk are expressed in kilometers if unit contains UNIT_KHN.

» The velocity, acceleration, jerk, TT-TDB, TCG-TCB or the derivatives of the angles of the librations of the Moon
are expressed in days if unit contains UNIT_DAY.

 The velocity, acceleration, jerk, TT-TDB, TCG-TCB or the derivatives of the angles of the librations of the Moon
are expressed in seconds if unit contains UNIT_SEC.

* The angles of the librations of the Moon are expressed in radians if unit contains UNIT_RAD.

For example, to get the positions, velocities, accelerations and jerks expressed in kilometers and kilometers/seconds,
the unit must be set to UNIT_KM + UNIT_SEC.

This function checks the units if invalid combinations of units are given to the function.

The following example prints the heliocentric coordinates of Mars at time=2442457.5

from calcephpy import *

jd0=2442457
dt=0.5EQ

(continues on next page)

4.4. Functions 21

CALCEPH - Python language, Release 4.0.5

(continued from previous page)

peph = CalcephBin.open("examplel.dat")

compute only the heliocentric position of Mars in km

P = peph.compute_order(jd®, dt, NaifId.MARS_BARYCENTER, NaifId.SUN,
Constants.UNIT_KM+Constants.UNIT_SEC+Constants.USE_NAIFID, 0)

print(P)

compute positions, velocities, accelerations and jerks of Mars in km and seconds
PVAJ = peph.compute_order(jd®, dt, NaifId.MARS_BARYCENTER, NaifId.SUN,

Constants.UNIT_KM+Constants.UNIT_SEC+Constants.USE_NAIFID, 3)
print (PVAJ)

peph.close()

4.4.9 calcephpy.CalcephBin.orient_order
calcephpy.CalcephBin.orient_order (JDO, time, target, unit, order) — PVAIJ

Parameters
* JDO (float/list/numpy.ndarray) -- Integer part of the Julian date (TDB or TCB)
* time (float/list/numpy.ndarray) -- Fraction part of the Julian date (TDB or TCB)

* target (int)-- The body whose orientations are requested. The numbering system depends
on the parameter unit.

« unit (int) --

The units of PV.

This integer is a sum of some unit constants (CALCEPH_UNIT_???) and/or the constant
USE_NAIFID.

If the unit contains USE_NAIFID, the NAIF identification numbering system is used for the
target (NAIF identification numbers for the list).

If the unit does not contain USE_NAIFID, the old number system is used for the target (see
the list in the function calcephpy.CalcephBin. compute()).

e order (int) -- The order of derivatives.

— =0, only the angles is computed. The first three numbers of PVAJ are valid for the results.

=1, only the angles and the first derivative are computed. The first six numbers of PVAJ
are valid for the results.

= 2, only the angles and the first and second derivatives are computed. The first nine
numbers of PVAJ are valid for the results.

=3, the angles and the first, second and third derivatives are computed. The first twelve
numbers of PVAJ are valid for the results.

If order equals to 1, the behavior of calcephpy.CalcephBin.orient_order() is the
same as calcephpy.CalcephBin.orient_unit().

Returns
An array to receive the euler angles, or nutation angles, and their derivatives for the orientation
of the body.

22 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

Return type
list

This function is similar to the function calcephpy.CalcephBin.orient_unit (), except that the order of the com-
puted derivatives is specified.

This function reads, if needed, in the ephemeris file self and interpolates the orientation of a single body (target) for
the time JDO+time and stores the results to PVAJ. The order of the derivatives are specified by order. The ephemeris
file self must have been previously opened with the function calcephpy.CalcephBin.open(). The output values
are expressed in the units specified by unit.

This function checks the units if invalid combinations of units are given to the function.
The returned array PVAJ has the following properties

e If unit contains OUTPUT_NUTATIONANGLES, the array contains the nutation angles and their successive deriva-
tives for the orientation of the body. At the present moment, only the nutation for the earth are supported in the
original DE files.

e If unit contains OUTPUT_EULERANGLES, or doesnot contain OUTPUT_NUTATIONANGLES, the array contains the
euler angles and their successive derivatives for the orientation of the body.

The returned array PVAJ must be large enough to store the results.
e PVAIJ[1:3] contain the angles and is always valid.
* PVAIJ[4:6] contain the first derivative and is only valid if order is greater or equal to 1.
* PVAIJ[7:9] contain the second derivative and is only valid if order is greater or equal to 2.
* PVAJ[10:12] contain the third derivative and is only valid if order is equal to 3.

If JDO and time are list or NumPy's array (1D) of double-precision floating-point values, the returned array PVAJ is a
list of 3*(order+1) arrays. Each array contain a single component of the orientation.

The values stored in the array PVAJ are expressed in the following units
» The derivatives of the angles are expressed in days if unit contains UNIT_DAY.
* The derivatives of the angles are expressed in seconds if unit contains UNIT_SEC.
* The angles and their derivatives are expressed in radians if unit contains UNIT_RAD.

The date (JDO, time) should be expressed in the same timescale as the ephemeris files, which can be retrieved using
the function calcephpy.CalcephBin.gettimescale().

The following example prints only the angles of libration of the Moon at time=2442457.5

from calcephpy import *

jd0=2442457
dt=0.5E0

peph = CalcephBin.open("examplel.dat")

P = peph.orient_order(jd®, dt, NaifId.MOON,
Constants.USE_NAIFID+Constants.UNIT_RAD+Constants.UNIT_SEC, 0)

print (P)

peph.close()

4.4. Functions 23

CALCEPH - Python language, Release 4.0.5

4.4.10 calcephpy.CalcephBin.rotangmom_order
calcephpy.CalcephBin.rotangmom_order (JDO, time, target, unit, order) — PVAJ

Parameters
* JDO (float) -- Integer part of the Julian date (TDB or TCB)
e time (float) -- Fraction part of the Julian date (TDB or TCB)

* target (int) -- The body whose orientations are requested. The numbering system depends
on the parameter unit.

« unit (int) --

The units of PV.

This integer is a sum of some unit constants (CALCEPH_UNIT_???) and/or the constant
USE_NAIFID.

If the unit contains USE_NAIFID, the NAIF identification numbering system is used for the
target (NAIF identification numbers for the list).

If the unit does not contain USE_NAIFID, the old number system is used for the target (see
the list in the function calcephpy.CalcephBin. compute()).

» order (int) -- The order of derivatives.

— =0, only the angular momentum is computed. The first three numbers of PVAJ are valid
for the results.

= 1, only the angular momentum and the first derivative are computed. The first six
numbers of PVAJ are valid for the results.

=2, only the angular momentum and the first and second derivatives are computed. The
first nine numbers of PVAJ are valid for the results.

=3, the angular momentum and the first, second and third derivatives are computed. The
first twelve numbers of PVAJ are valid for the results.

If order equals to 1, the behavior of calcephpy.CalcephBin.rotangmom_order () is the
same as calcephpy.CalcephBin.rotangmom_unit().

Returns
An array to receive the angular momentum due to its rotation, divided by the product of the mass
and of the square of the radius, and their different order of the derivatives, of the body.

Return type
list

This function is similar to the function calcephpy.CalcephBin.orient_unit (), except that the order of the com-
puted derivatives is specified.

This function reads, if needed, in the ephemeris file self and interpolates the angular momentum vector due to the
rotation of the body, divided by the product of the mass m and of the square of the radius R, of a single body (target)
for the time JDO+time and stores the results to PVAJ. The angular momentum L , due to the rotation of the body, is
defined as the product of the inertia matrix I by the angular velocity vector w. So the returned value is L/(mR?) =
(Iw)/(mR?) The order of the derivatives are specified by order. The ephemeris file self must have been previously
opened with the function calcephpy.CalcephBin.open(). The output values are expressed in the units specified
by unit.

This function checks the units if invalid combinations of units are given to the function.
The returned array PVAJ must be large enough to store the results.

e PVAIJ[1:3] contain the angular momentum and is always valid.

24 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

* PVAIJ[4:6] contain the first derivative and is only valid if order is greater or equal to 1.
* PVAIJ[7:9] contain the second derivative and is only valid if order is greater or equal to 2.
* PVAJ[10:12] contain the third derivative and is only valid if order is equal to 3.
The values stored in the array PVAJ are expressed in the following units
e The angular momentum and its derivatives are expressed in days if unit contains UNIT_DAY.
* The angular momentum and its derivatives are expressed in seconds if unit contains UNIT_SEC.

The date (JDO, time) should be expressed in the same timescale as the ephemeris files, which can be retrieved using
the function calcephpy.CalcephBin.gettimescale().

The following example prints only the angular momentum, due to its rotation, of the Earth at time=2451419.5

from calcephpy import *

jd0=2451419
dt=0.5E0

peph = CalcephBin.open("example2_rotangmom.dat")

G = peph.rotangmom_order(jd®, dt, NaifId.EARTH,
Constants.USE_NATFID+Constants.UNIT_SEC, 0)

print (G)

peph.close()

4.4.11 calcephpy.CalcephBin.getconstant
calcephpy.CalcephBin.getconstant (name) — value

Parameters
name (str) -- name of the constant

Returns
first value of the constant

Return type
float

This function returns the value associated to the constant name in the header of the ephemeris file self. Only the first
value is returned if multiple values are associated to a constant, such as a list of values.

This function is the same function as calcephpy.CalcephBin.getconstantsd().

The following example prints the value of the astronomical unit stored in the ephemeris file

from calcephpy import *

peph = CalcephBin.open("examplel.dat")
AU = peph.getconstant ("AU")

print (AU)

peph.close()

4.4. Functions 25

CALCEPH - Python language, Release 4.0.5

4.4.12 calcephpy.CalcephBin.getconstantsd
calcephpy.CalcephBin.getconstantsd(name) — value

Parameters
name (str) -- name of the constant

Returns
first value of the constant

Return type
float

This function returns, as a floating-point number, the value associated to the constant name in the header of the
ephemeris file self. Only the first value is returned if multiple values are associated to a constant, such as a list of
values. The value must be a floating-point or integer number, otherwise an error is reported.

This function is the same function as calcephpy.CalcephBin.getconstant().

The following example prints the value of the astronomical unit stored in the ephemeris file

from calcephpy import *

peph = CalcephBin.open("examplel.dat")
AU = peph.getconstantsd("AU")

print (AU)

peph.close()

4.4.13 calcephpy.CalcephBin.getconstantvd
calcephpy.CalcephBin.getconstantvd (name) — arrayvalue

Parameters
name (str) -- name of the constant

Returns
array of values for the constant

Return type
list

This function returns, as floating-point numbers, all values associated to the constant name in the header of the
ephemeris file self.

The values must be floating-point or integer numbers, otherwise an error is reported.

The following example prints the body radii of the earth stored in the ephemeris file

from calcephpy import *

peph = CalcephBin.open("examplel.dat")
radii = peph.getconstantvd("'BODY399_RADII")
print(radii)

peph.close()

26 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

4.4.14 calcephpy.CalcephBin.getconstantss
calcephpy.CalcephBin.getconstantss (name) — value

Parameters
name (str) -- name of the constant

Returns
first value of the constant

Return type
str

This function returns, as a string of character, the value associated to the constant name in the header of the ephemeris
file self. Only the first value is returned if multiple values are associated to a constant, such as a list of values. The

value must be a string, otherwise an error is reported.

The following example prints the value of the unit stored in the ephemeris file

from calcephpy import *

peph = CalcephBin.open("examplel.dat")
UNIT = peph.getconstantss("UNIT")
print (UNIT)

peph.close()

4.4.15 calcephpy.CalcephBin.getconstantvs
calcephpy.CalcephBin.getconstantvs (name) — arrayvalue

Parameters
name (str) -- name of the constant

Returns
array of values for the constant

Return type
list

This function returns, as strings of characters, all values associated to the constant name in the header of the ephemeris

file self.

The values must be strings, otherwise an error is reported.

The following example prints the units of the mission stored in the ephemeris file

from calcephpy import *

peph = CalcephBin.open("examplel.dat")
mission_units = peph.getconstantvs('MISSION_UNITS")
print(mission_units)

peph.close()

4.4.16 calcephpy.CalcephBin.getconstantcount
calcephpy.CalcephBin.getconstantcount ()

Returns
number of constants

4.4. Functions

27

CALCEPH - Python language, Release 4.0.5

Return type
int
This function returns the number of constants available in the header of the ephemeris file self.

The following example prints the number of available constants stored in the ephemeris file

from calcephpy import *

peph = CalcephBin.open("examplel.dat")
n = peph.getconstantcount()

print ("number of constants", n)
peph.close()

4.4.17 calcephpy.CalcephBin.getconstantindex

calcephpy.CalcephBin.getconstantindex (index) — name, value

Parameters
index (int) -- index of the constant, between 1 and calcephpy.CalcephBin.
getconstantcount ()

Returns

name of the constant, first value of the constant

Return type
str, float

This function returns the name and its value of the constant available at the specified index in the header of the ephemeris
file self. The value of index must be between 1 and calcephpy.CalcephBin.getconstantcount().

Only the first value is returned if multiple values are associated to a constant, such as a list of values. If the first value
is not an floating-point number, such as a string, then the function returns 0 without raising an error.

The following example displays the name of the constants, stored in the ephemeris file, and their values

from calcephpy import *

peph = CalcephBin.open("examplel.dat")

n = peph.getconstantcount ()

for j in range(l, n+1):
name, value = peph.getconstantindex(j)
print (name, value)

peph.close()

4.4.18 calcephpy.CalcephBin.getfileversion
calcephpy.CalcephBin.getfileversion()

Returns
version of the ephemeris file

Return type
Str

This function returns the version of the ephemeris file, as a string. For example, the argument version will contain
'INPOP10B', 'EPM2017' or 'DE405',

28 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

If the file is an original JPL binary planetary ephemeris, then the version of the file can always be determined. If the file
is a spice kernel, the version of the file is retrieved from the constant INPOP_PCK_VERSION, EPM_PCK_VERSION,
or PCK_VERSION.

The following example prints the version of the ephemeris file.

from calcephpy import *

peph = CalcephBin.open("examplel.dat")
version = peph.getfileversion()
print(version)

peph.close()

4.4.19 calcephpy.CalcephBin.getidbyname
calcephpy.CalcephBin.getidbyname (name, unit) — id

Parameters
* name (str) -- name of the body
e unit (int) --
The unit of id.

This integer is O or the constant USE_NAIFID.

If the unit equals USE_NAIFID, the NAIF identification numbering system is used for the id
(NAIF identification numbers for the list).

If the unit equals 0, the old number system is used for the idr (see the list in the function
calcephpy.CalcephBin.compute()).

Returns
identification number of the body

Return type
int or None

This function returns the identification number of the body associated to the given name. If no such name exists in the
mapping, then the value Nore is returned.

The function is not sensitive to the case of the characters of the string name. Leading and trailing spaces are ignored.
At least one space character is required between the words. For example, 'Saturn Barycenter' is the same as ' Saturn
Barycenter ', but is different from 'SaturnBarycenter'.

The library has a default mapping listed in the list NAIF identification numbers. The mapping name/id may be overriden
by the text constants NAIF_BODY_CODE and NAIF_BODY_NAME in the 'SPICE' ephemeris files.

The following example prints the identification number of the Moon.

from calcephpy import *

peph = CalcephBin.open("examplel.dat")
print the id of the Moon using the old numbering system
moon = peph.getidbyname('Moon', 0)
print (moon)
print the id of the Moon using the NAIF identification numbering system
moon = peph.getidbyname('Moon', Constants.USE_NAIFID)
print (moon)
(continues on next page)

4.4. Functions 29

CALCEPH - Python language, Release 4.0.5

(continued from previous page)

print (NaifId.MOON)
peph.close()

4.4.20 calcephpy.CalcephBin.gethamebyidss
calcephpy.CalcephBin.getnamebyidss (id, unit) — name

Parameters
* id (int) -- identification number of the body
e unit (int) --

The unit of id.
This integer is O or the constant USE_NAIFID.

If the unit equals USE_NAIFID, the NAIF identification numbering system is used for the id
(NAIF identification numbers for the list).

If the unit equals 0, the old number system is used for the idr (see the list in the function
calcephpy.CalcephBin. compute()).

Returns
name of the body

Return type
str or None

This function returns the first given name of the body associated to the identification number id. If no such name exists
in the mapping, then the value None is returned.

The library has a default mapping listed in the list NAIF identification numbers. The mapping name/id may be overriden
by the text constants NAIF_BODY_CODE and NAIF_BODY_NAME in the 'SPICE' ephemeris files.

The following example prints the name of the Earth-Moon barycenter.

from calcephpy import *

peph = CalcephBin.open("examplel.dat")

print the name of the Earth-Moon barycenter using the old numbering system

emb = peph.getnamebyidss(13, 0)

print (emb)

print the name of the Earth-Moon barycenter using the NAIF identification numbering.,
—System

emb = peph.getnamebyidss(3, Constants.USE_NAIFID)

print (emb)

peph.close()

4.4.21 calcephpy.CalcephBin.gettimescale
calcephpy.CalcephBin.gettimescale()

Returns
time scale of the ephemeris file

Return type
int

This function returns the timescale of the ephemeris file self :

30 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

* 1 if the quantities of all bodies are expressed in the TDB time scale.
* 2 if the quantities of all bodies are expressed in the TCB time scale.

The following example prints the time scale available in the ephemeris file

from calcephpy import *

peph = CalcephBin.open("examplel.dat")
timescale = peph.gettimescale()
print(timescale)

peph.close()

4.4.22 calcephpy.CalcephBin.gettimespan
calcephpy.CalcephBin.gettimespan() — firsttime, lasttime, continuous

Returns
first and last available time, availability of the quantities of the bodies over the time span

Return type
float, float, int

This function returns the first and last time available in the ephemeris file self. The Julian date for the first and last time
are expressed in the time scale returned by calcephpy.CalcephBin.gettimescale() .

It returns the following value in the parameter continuous :
* 1 if the quantities of all bodies are available for any time between the first and last time.
* 2 if the quantities of some bodies are available on discontinuous time intervals between the first and last time.

* 3 if the quantities of each body are available on a continuous time interval between the first and last time, but not
available for any time between the first and last time.

The following example prints the first and last time available in the ephemeris file

from calcephpy import *

peph = CalcephBin.open("examplel.dat")

firsttime, lasttime, continuous = peph.gettimespan()
print(firsttime, lasttime, continuous)

peph.close()

4.4.23 calcephpy.CalcephBin.getpositionrecordcount
calcephpy.CalcephBin.getpositionrecordcount ()

Returns
number of position's records

Return type
int

This function returns the number of position's records available in the ephemeris file self. Usually, the number of records
is equal to the number of bodies in the ephemeris file if the timespan is continuous. If the timespan is discontinuous for
the target and center bodies, then each different timespan is counted as a different record. If the ephemeris file contain
timescale transformations' records, such as 77-TDB or TCG-TCB, then these records are included in the returned value.

The following example prints the number of position's records available in the ephemeris file

4.4. Functions 31

CALCEPH - Python language, Release 4.0.5

from calcephpy import *

peph = CalcephBin.open("examplel.dat")
n = peph.getpositionrecordcount()
print("number of position's record", n)
peph.close()

4.4.24 calcephpy.CalcephBin.getpositionrecordindex
calcephpy.CalcephBin.getpositionrecordindex (index) — target, center, firsttime, lasttime, frame

Parameters
index (int) -- index of the position's record, between 1 and calcephpy.CalcephBin.
getpositionrecordcount ()

Returns

target : the target body

center : the origin body

firsttime : julian date of the first time
lasttime : julian date of the last time

frame : reference frame (see the list, below)

Return type
int, int, float, float, int

This function returns the target and origin bodies, the first and last time, and the reference frame available at the
specified index for the position's records of the ephemeris file self. The NAIF identification numbering system is used
for the target and center integers (NAIF identification numbers for the list). The Julian date for the first and last time
are expressed in the time scale returned by calcephpy.CalcephBin.gettimescale().

It returns the following value in the parameter frame :

value Name
1 ICRF

The following example displays the position's records stored in the ephemeris file.

from calcephpy import *

peph = CalcephBin.open("examplel.dat")

n = peph.getpositionrecordcount()

for j in range(l, n+1):
itarget, icenter, firsttime, lasttime, iframe = peph.getpositionrecordindex(j)
print(itarget, icenter, firsttime, lasttime, iframe)

peph.close()

32 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

4.4.25 calcephpy.CalcephBin.getpositionrecordindex2
calcephpy.CalcephBin.getpositionrecordindex2 (index) — target, center, firsttime, lasttime, frame, segid

Parameters
index (int) -- index of the position's record, between 1 and calcephpy.CalcephBin.
getpositionrecordcount ()

Returns

target : the target body

center : the origin body

firsttime : julian date of the first time
lasttime : julian date of the last time

frame : reference frame (see the list, below)
segid : segment type (see the details, below)

Return type
int, int, float, float, int, int

This function returns the target and origin bodies, the first and last time, the reference frame, and the segment type
available at the specified index for the position's records of the ephemeris file self. The NAIF identification numbering
system is used for the target and center integers (NAIF' identification numbers for the list). The Julian date for the first
and last time are expressed in the time scale returned by calcephpy.CalcephBin.gettimescale().

It returns the following value in the parameter frame :

value Name
1 ICRF

It returns in the parameter segid one of the predefined constants Constants.SEGTYPE _... (Constants).

The following example displays the position's records stored in the ephemeris file.

from calcephpy import *

peph = CalcephBin.open("examplel.dat")

n = peph.getpositionrecordcount()

for j in range(l, n+1):
itarget, icenter, firsttime, lasttime, iframe, iseg = peph.getpositionrecordindex2(j)
print(itarget, icenter, firsttime, lasttime, iframe, iseg)

peph.close()

4.4.26 calcephpy.CalcephBin.getorientrecordcount
calcephpy.CalcephBin.getorientrecordcount ()

Returns
number of orientation's records

Return type
int

4.4. Functions 33

CALCEPH - Python language, Release 4.0.5

This function returns the number of orientation's records available in the ephemeris file self. Usually, the number
of records is equal to the number of bodies in the ephemeris file if the timespan is continuous. If the timespan is
discontinuous for the target body, then each different timespan is counted as a different record.

The following example prints the number of orientation's records available in the ephemeris file

from calcephpy import *

peph = CalcephBin.open("examplel.dat")

n = peph.getorientrecordcount()

print ("number of orientation's record", n)
peph.close()

4.4.27 calcephpy.CalcephBin.getorientrecordindex
calcephpy.CalcephBin.getorientrecordindex(index) — target, firsttime, lasttime, frame

Parameters
index (int) -- index of the orientation's record, between 1 and calcephpy.CalcephBin.
getorientrecordcount ()

Returns

target : the target body

firsttime : julian date of the first time
lasttime : julian date of the last time

frame : reference frame (see the list, below)

Return type
int, float, float, int

This function returns the target body, the first and last time, and the reference frame available at the specified index
for the orientation's records of the ephemeris file self. The NAIF identification numbering system is used for the target
body (NAIF identification numbers for the list). The Julian date for the first and last time are expressed in the time scale
returned by calcephpy.CalcephBin.gettimescale().

It returns the following value in the parameter frame :

value Name
1 ICRF

The following example displays the orientation's records stored in the ephemeris file.

from calcephpy import *

peph = CalcephBin.open("examplel.dat")

n = peph.getorientrecordcount()

for j in range(l, n+1):
itarget, firsttime, lasttime, iframe = peph.getorientrecordindex(j)
print(itarget, firsttime, lasttime, iframe)

peph.close()

34 Chapter 4. Multiple file access functions

CALCEPH - Python language, Release 4.0.5

4.4.28 calcephpy.CalcephBin.getorientrecordindex2
calcephpy.CalcephBin.getorientrecordindex2 (index) — target, firsttime, lasttime, frame, segid

Parameters
index (int) -- index of the orientation's record, between 1 and calcephpy.CalcephBin.
getorientrecordcount ()

Returns

target : the target body

firsttime : julian date of the first time
lasttime : julian date of the last time

frame : reference frame (see the list, below)
segid : segment type (see the details, below)

Return type
int, float, float, int, int

This function returns the target body, the first and last time, the reference frame and the segment type available at
the specified index for the orientation's records of the ephemeris file self. The NAIF identification numbering system
is used for the target body (NAIF identification numbers for the list). The Julian date for the first and last time are
expressed in the time scale returned by calcephpy.CalcephBin.gettimescale().

It returns the following value in the parameter frame :

value Name
1 ICRF

It returns in the parameter segid one of the predefined constants Constants. SEGTYPE_... (Constants).

The following example displays the orientation's records stored in the ephemeris file.

from calcephpy import *

peph = CalcephBin.open("examplel.dat")

n = peph.getorientrecordcount()

for j in range(l, n+1):
itarget, firsttime, lasttime, iframe, iseg = peph.getorientrecordindex2(j)
print(itarget, firsttime, lasttime, iframe, iseg)

peph.close()

4.4.29 calcephpy.CalcephBin.close
calcephpy.CalcephBin.close()

This function closes the access associated to the ephemeris descriptor and frees allocated memory for it.

4.4. Functions 35

CALCEPH - Python language, Release 4.0.5

36 Chapter 4. Multiple file access functions

CHAPTER
FIVE

ERROR FUNCTIONS

The following group of functions defines the behavior of the library when errors occur during the execution.

5.1 Usage

The following examples, that can be found in the directory examples of the library sources, show the typical usage of

this group of functions.
The example in Python language is pyerror.py.

The following example shows how to stop the execution on the error.

from calcephpy import *

#set the error handler to stop on error
seterrorhandler(2, 0);

open the ephemeris file
peph = CalcephBin.open("examplel.dat")

The following example shows how to define a custom error handler function.

from calcephpy import *

def myhandler(msg):
print("The calceph calls the function myhandler");
print("The message contains {0} characters\n".format(len(msg)))
print("The error message is :")

T (R e ")
print(msg)
T (G S e ")

print("The error handler returns")

set the error handler to use my own callback
seterrorhandler (3, myhandler)

open the ephemeris file
peph = CalcephBin.open("examplel.dat")

37

CALCEPH - Python language, Release 4.0.5

5.2 calcephpy.seterrorhandler

calcephpy.seterrorhandler (typehandler, userfunc)

Parameters
* typehandler (int) -- type of handler
» userfunc (function) -- user function

This function defines the behavior of the library when an error occurs during the execution of the library's functions.
This function should be (not mandatory) called before any other functions of the library. The behavior depends on the
value of typehandler.

The possible values for typehandler are :

value meaning
1

The library displays a message and continues the
execution.

The functions return an error code. The python and
Octave/Matlab interfaces raise

an exception.
This is the default behavior of the library.

2
The library displays a message
and terminates the execution with a system call to the
function exit.

3

The library calls the user function userfunc with the
message.

If the function is called with 1 or 2 for typehandler, the parameter userfunc must be set to 0.

The function userfunc must be defined as

def userfunc (msg)
parameter msg is of type str

38 Chapter 5. Error functions

CHAPTER
SIX

MISCELLANEOUS FUNCTIONS

6.1 calcephpy.getmaxsupportedorder

calcephpy.getmaxsupportedorder (segid)

Parameters
segid (int) -- type of the segment.

Returns
version of the library

Return type
Str

This function returns the maximal order of the derivatives computed by the functions calcephpy.CalcephBin.
compute_order (), calcephpy.CalcephBin.orient_order(), for the segment type segid. If the segment
type is unknown by the library, the function returns -1.

The accepted values of segid* are the predefined constants Constants.SEGTYPE_... (Constants).

from calcephpy import *
maxorder = getmaxsupportedorder(Constants.SEGTYPE_SPK_2)
print('maximal order is ', maxorder)

6.2 calcephpy.getversion_str

calcephpy.getversion_str()

Returns
version of the library

Return type
str

This function returns the version of the CALCEPH Library, as a string.

from calcephpy import *
print('version=", getversion_str())

39

CALCEPH - Python language, Release 4.0.5

40 Chapter 6. Miscellaneous functions

CHAPTER
SEVEN

NAIF IDENTIFICATION NUMBERS

The following predefined values must be used as the target body and origin of the coordinate sys-
tem with the functions calcephpy.CalcephBin.compute_unit(), calcephpy.CalcephBin.orient_unit()
calcephpy.CalcephBin.compute_order() or calcephpy.CalcephBin.orient_order() if and only if the
value USE_NAIFID has been set in the parameter unit.

This list is already predefined in the class Naifld (7ypes) of the module calcephpy (Modules) for the Python 2/3 interface.
Relative to C or Fortran interface, the prefix NAIFID_ is deleted for the following numbers.

7.1 Sun and planetary barycenters

Predefined Macros

NAIF ID Name

NAIFID_SOLAR_SYSTEM_BARYCENTER

NAIFID_MERCURY_BARYCENTER

NAIFID_VENUS_BARYCENTER

NAIFID_EARTH_MOON_BARYCENTER

NAIFID_MARS_BARYCENTER
NAIFID_JUPITER_BARYCENTER
NAIFID_SATURN_BARYCENTER
NAIFID_URANUS_BARYCENTER
NAIFID_NEPTUNE_BARYCENTER
NAIFID_PLUTO_BARYCENTER
NAIFID_SUN

0 Solar System Barycenter
1 Mercury Barycenter

2 Venus Barycenter

3 Earth-Moon Barycenter
4 Mars Barycenter

5 Jupiter Barycenter

6 Saturn Barycenter

7 Uranus Barycenter

8 Neptune Barycenter

9 Pluto Barycenter

10 Sun

7.2 Coordinate Time ephemerides

Name

Predefined Macros NAIF ID

NAIFID_TIME_ CENTER 1000000000
NAIFID_TIME_TTMTDB 1000000001
NAIFID_TIME_TCGMTCB 1000000002

center ID for Coordinate Time ephemerides'
Coordinate Time ephemeride TT-TDB?
Coordinate Time ephemeride TCG-TCB?

! These values must only be used as a center body.
2 These values must only be used as a target body.

41

CALCEPH - Python language, Release 4.0.5

7.3 Planet centers and satellites

Predefined Macros NAIF ID Name
NAIFID_MERCURY 199 Mercury
NAIFID_VENUS 299 Venus
NAIFID_EARTH 399 Earth
NAIFID_MOON 301 Moon
NAIFID_MARS 499 Mars
NAIFID_PHOBOS 401 Phobos
NAIFID_DEIMOS 402 Deimos
NAIFID_JUPITER 599 Jupiter
NAIFID_IO 501 Io
NAIFID_EUROPA 502 Europa
NAIFID_GANYMEDE 503 Ganymede
NAIFID_CALLISTO 504 Callisto
NAIFID_AMALTHEA 505 Amalthea
NAIFID_HIMALIA 506 Himalia
NAIFID_ELARA 507 Elara
NAIFID_PASIPHAE 508 Pasiphae
NAIFID_SINOPE 509 Sinope
NAIFID_LYSITHEA 510 Lysithea
NAIFID_CARME 511 Carme
NAIFID_ANANKE 512 Ananke
NAIFID_LEDA 513 Leda
NAIFID_THEBE 514 Thebe
NAIFID_ADRASTEA 515 Adrastea
NAIFID_METIS 516 Metis
NAIFID_CALLIRRHOE 517 Callirrhoe
NAIFID_THEMISTO 518 Themisto
NAIFID_MEGACLITE 519 Megaclite
NAIFID_TAYGETE 520 Taygete
NAIFID_CHALDENE 521 Chaldene
NAIFID_HARPALYKE 522 Harpalyke
NAIFID_KALYKE 523 Kalyke
NAIFID_IOCASTE 524 Tocaste
NAIFID_ERINOME 525 Erinome
NAIFID_ISONOE 526 Isonoe
NAIFID_PRAXIDIKE 527 Praxidike
NAIFID_AUTONOE 528 Autonoe
NAIFID_THYONE 529 Thyone
NAIFID_HERMIPPE 530 Hermippe
NAIFID_AITNE 531 Aitne
NAIFID_EURYDOME 532 Eurydome
NAIFID_EUANTHE 533 Euanthe
NAIFID_EUPORIE 534 Euporie
NAIFID_ORTHOSIE 535 Orthosie
NAIFID_SPONDE 536 Sponde

continues on next page

42 Chapter 7. NAIF identification numbers

CALCEPH - Python language, Release 4.0.5

Table 1 - continued from previous page

Predefined Macros NAIF ID Name
NAIFID_KALE 537 Kale
NAIFID_PASITHEE 538 Pasithee
NAIFID_HEGEMONE 539 Hegemone
NAIFID_MNEME 540 Mneme
NAIFID_AOEDE 541 Aoede
NAIFID_THELXINOE 542 Thelxinoe
NAIFID_ARCHE 543 Arche
NAIFID_KALLICHORE 544 Kallichore
NAIFID_HELIKE 545 Helike
NAIFID_CARPO 546 Carpo
NAIFID_EUKELADE 547 Eukelade
NAIFID_CYLLENE 548 Cyllene
NAIFID_KORE 549 Kore
NAIFID_HERSE 550 Herse
NAIFID_DIA 553 Dia
NAIFID_SATURN 699 Saturn
NAIFID_MIMAS 601 Mimas
NAIFID_ENCELADUS 602 Enceladus
NAIFID_TETHYS 603 Tethys
NAIFID_DIONE 604 Dione
NAIFID_RHEA 605 Rhea
NAIFID_TITAN 606 Titan
NAIFID_HYPERION 607 Hyperion
NAIFID_IAPETUS 608 Iapetus
NAIFID_PHOEBE 609 Phoebe
NAIFID_JANUS 610 Janus
NAIFID_EPIMETHEUS 611 Epimetheus
NAIFID_HELENE 612 Helene
NAIFID_TELESTO 613 Telesto
NAIFID_CALYPSO 614 Calypso
NAIFID_ATLAS 615 Atlas
NAIFID_PROMETHEUS 616 Prometheus
NAIFID_PANDORA 617 Pandora
NAIFID_PAN 618 Pan
NAIFID_YMIR 619 Ymir
NAIFID_PAALIAQ 620 Paaliaq
NAIFID_TARVOS 621 Tarvos
NAIFID_IJIRAQ 622 Ijiraq
NAIFID_SUTTUNGR 623 Suttungr
NAIFID_KIVIUQ 624 Kiviuq
NAIFID_MUNDILFARI 625 Mundilfari
NAIFID_ALBIORIX 626 Albiorix
NAIFID_SKATHI 627 Skathi
NAIFID_ERRIAPUS 628 Erriapus
NAIFID_SIARNAQ 629 Siarnaq
NAIFID_THRYMR 630 Thrymr
NAIFID_NARVI 631 Narvi
NAIFID_METHONE 632 Methone
NAIFID_PALLENE 633 Pallene

continues on next page

7.3. Planet centers and satellites 43

CALCEPH - Python language, Release 4.0.5

Table 1 - continued from previous page

Predefined Macros NAIF ID Name
NAIFID_POLYDEUCES 634 Polydeuces
NAIFID_DAPHNIS 635 Daphnis
NAIFID_AEGIR 636 Aegir
NAIFID_BEBHIONN 637 Bebhionn
NAIFID_BERGELMIR 638 Bergelmir
NAIFID_BESTLA 639 Bestla
NAIFID_FARBAUTI 640 Farbauti
NAIFID_FENRIR 641 Fenrir
NAIFID_FORNJOT 642 Fornjot
NAIFID_HATI 643 Hati
NAIFID_HYROKKIN 644 Hyrokkin
NAIFID_KARI 645 Kari
NAIFID_LOGE 646 Loge
NAIFID_SKOLL 647 Skoll
NAIFID_SURTUR 648 Surtur
NAIFID_ANTHE 649 Anthe
NAIFID_JARNSAXA 650 Jarnsaxa
NAIFID_GREIP 651 Greip
NAIFID_TARQEQ 652 Tarqeq
NAIFID_AEGAEON 653 Aegaeon
NAIFID_URANUS 799 Uranus
NAIFID_ARIEL 701 Ariel
NAIFID_UMBRIEL 702 Umbriel
NAIFID_TITANIA 703 Titania
NAIFID_OBERON 704 Oberon
NAIFID_MIRANDA 705 Miranda
NAIFID_CORDELIA 706 Cordelia
NAIFID_OPHELIA 707 Ophelia
NAIFID_BIANCA 708 Bianca
NAIFID_CRESSIDA 709 Cressida
NAIFID_DESDEMONA 710 Desdemona
NAIFID_JULIET 711 Juliet
NAIFID_PORTIA 712 Portia
NAIFID_ROSALIND 713 Rosalind
NAIFID_BELINDA 714 Belinda
NAIFID_PUCK 715 Puck
NAIFID_CALIBAN 716 Caliban
NAIFID_SYCORAX 717 Sycorax
NAIFID_PROSPERO 718 Prospero
NAIFID_SETEBOS 719 Setebos
NAIFID_STEPHANO 720 Stephano
NAIFID_TRINCULO 721 Trinculo
NAIFID_FRANCISCO 722 Francisco
NAIFID_MARGARET 723 Margaret
NAIFID_FERDINAND 724 Ferdinand
NAIFID_PERDITA 725 Perdita
NAIFID_MAB 726 Mab
NAIFID_CUPID 727 Cupid

continues on next page

44 Chapter 7. NAIF identification numbers

CALCEPH - Python language, Release 4.0.5

Table 1 - continued from previous page

7.4 Comets

Predefined Macros NAIF ID Name
NAIFID_NEPTUNE 899 Neptune
NAIFID_TRITON 801 Triton
NAIFID_NEREID 802 Nereid
NAIFID_NAIAD 803 Naiad
NAIFID_THALASSA 804 Thalassa
NAIFID_DESPINA 805 Despina
NAIFID_GALATEA 806 Galatea
NAIFID_LARISSA 807 Larissa
NAIFID_PROTEUS 808 Proteus
NAIFID_HALIMEDE 809 Halimede
NAIFID_PSAMATHE 810 Psamathe
NAIFID_SAO 811 Sao
NAIFID_LAOMEDEIA 812 Laomedeia
NAIFID_NESO 813 Neso
NAIFID_PLUTO 999 Pluto
NAIFID_CHARON 901 Charon
NAIFID_NIX 902 Nix
NAIFID_HYDRA 903 Hydra
NAIFID_KERBEROS 904 Kerberos
NAIFID_STYX 905 Styx
Predefined Macros NAIF ID Name
NAIFID_AREND 1000001 Arend
NAIFID_AREND_RIGAUX 1000002 Arend-Rigaux
NAIFID_ASHBROOK_JACKSON 1000003 Ashbrook-Jackson
NAIFID_BOETHIN 1000004 Boethin
NAIFID_BORRELLY 1000005 Borrelly
NAIFID_BOWELL_SKIFF 1000006 Bowell-Skiff
NAIFID_BRADFIELD 1000007 Bradfield
NAIFID_BROOKS_2 1000008 Brooks 2
NAIFID_BRORSEN_METCALF 1000009 Brorsen-Metcalf
NAIFID_BUS 1000010 Bus
NAIFID_CHERNYKH 1000011 Chernykh
NAIFID_CHURYUMOV_GERASIMENKO 1000012 Churyumov-Gerasimenko
NAIFID_CIFFREO 1000013 Ciffreo
NAIFID_CLARK 1000014 Clark
NAIFID_COMAS_SOLA 1000015 Comas Sola
NAIFID_CROMMELIN 1000016 Crommelin
NAIFID_D__ARREST 1000017 D"Drrest
NAIFID_DANIEL 1000018 Daniel
NAIFID_DE_VICO_SWIFT 1000019 De Vico-Swift
NAIFID_DENNING_FUJIKAWA 1000020 Denning-Fujikawa
NAIFID_DU_TOIT _1 1000021 Du Toit 1
NAIFID_DU_TOIT_HARTLEY 1000022 Du Toit-Hartley
NAIFID_DUTOIT_NEUJMIN_DELPORTE 1000023 Dutoit-Neujmin-Delporte

continues on next page

7.4. Comets

CALCEPH - Python language, Release 4.0.5

Table 2 - continued from previous page

Predefined Macros NAIF ID Name
NAIFID_DUBIAGO 1000024 Dubiago
NAIFID_ENCKE 1000025 Encke
NAIFID_FAYE 1000026 Faye
NAIFID_FINLAY 1000027 Finlay
NAIFID_FORBES 1000028 Forbes
NAIFID_GEHRELS _1 1000029 Gehrels 1
NAIFID_GEHRELS_2 1000030 Gehrels 2
NAIFID_GEHRELS_3 1000031 Gehrels 3
NAIFID_GIACOBINI_ZINNER 1000032 Giacobini-Zinner
NAIFID_GICLAS 1000033 Giclas
NAIFID_GRIGG_SKJELLERUP 1000034 Grigg-Skjellerup
NAIFID_GUNN 1000035 Gunn
NAIFID_HALLEY 1000036 Halley
NAIFID_HANEDA_CAMPOS 1000037 Haneda-Campos
NAIFID_HARRINGTON 1000038 Harrington
NAIFID_HARRINGTON_ABELL 1000039 Harrington-Abell
NAIFID_HARTLEY_1 1000040 Hartley 1
NAIFID_HARTLEY_2 1000041 Hartley 2
NAIFID_HARTLEY_IRAS 1000042 Hartley-Iras
NAIFID_HERSCHEL_RIGOLLET 1000043 Herschel-Rigollet
NAIFID_HOLMES 1000044 Holmes
NAIFID_HONDA_MRKOS_PAJDUSAKOVA 1000045 Honda-Mrkos-Pajdusakova
NAIFID_HOWELL 1000046 Howell
NAIFID_IRAS 1000047 Iras
NAIFID_JACKSON_NEUJMIN 1000048 Jackson-Neujmin
NAIFID_JOHNSON 1000049 Johnson
NAIFID_KEARNS_KWEE 1000050 Kearns-Kwee
NAIFID_KLEMOLA 1000051 Klemola
NAIFID_KOHOUTEK 1000052 Kohoutek
NAIFID_KOJIMA 1000053 Kojima
NAIFID_KOPFF 1000054 Kopft
NAIFID_KOWAL_1 1000055 Kowal 1
NAIFID_KOWAL_2 1000056 Kowal 2
NAIFID_KOWAL_MRKOS 1000057 Kowal-Mrkos
NAIFID_KOWAL_VAVROVA 1000058 Kowal-Vavrova
NAIFID_LONGMORE 1000059 Longmore
NAIFID_LOVAS_1 1000060 Lovas 1
NAIFID_MACHHOLZ 1000061 Machholz
NAIFID_MAURY 1000062 Maury
NAIFID_NEUJMIN_ 1 1000063 Neujmin 1
NAIFID_NEUJMIN_2 1000064 Neujmin 2
NAIFID_NEUJMIN_3 1000065 Neujmin 3
NAIFID_OLBERS 1000066 Olbers
NAIFID_PETERS_HARTLEY 1000067 Peters-Hartley
NAIFID_PONS_BROOKS 1000068 Pons-Brooks
NAIFID_PONS_WINNECKE 1000069 Pons-Winnecke
NAIFID_REINMUTH_1 1000070 Reinmuth 1
NAIFID_REINMUTH_2 1000071 Reinmuth 2
NAIFID_RUSSELL_1 1000072 Russell 1
NAIFID_RUSSELL_2 1000073 Russell 2

continues on next page

46

Chapter 7. NAIF identification numbers

CALCEPH - Python language, Release 4.0.5

Table 2 - continued from previous page

Predefined Macros NAIF ID Name
NAIFID_RUSSELL_3 1000074 Russell 3
NAIFID_RUSSELL_4 1000075 Russell 4
NAIFID_SANGUIN 1000076 Sanguin
NAIFID_SCHAUMASSE 1000077 Schaumasse
NAIFID_SCHUSTER 1000078 Schuster

NAIFID_SCHWASSMANN_WACHMANN_1 1000079 Schwassmann-Wachmann 1
NAIFID_SCHWASSMANN_WACHMANN_2 1000080 Schwassmann-Wachmann 2
NAIFID_SCHWASSMANN_WACHMANN_3 1000081 Schwassmann-Wachmann 3

NAIFID_SHAJN_SCHALDACH 1000082 Shajn-Schaldach
NAIFID_SHOEMAKER_1 1000083 Shoemaker 1
NAIFID_SHOEMAKER_2 1000084 Shoemaker 2
NAIFID_SHOEMAKER_3 1000085 Shoemaker 3
NAIFID_SINGER_BREWSTER 1000086 Singer-Brewster
NAIFID_SLAUGHTER_BURNHAM 1000087 Slaughter-Burnham
NAIFID_SMIRNOVA_CHERNYKH 1000088 Smirnova-Chernykh
NAIFID_STEPHAN_OTERMA 1000089 Stephan-Oterma
NAIFID_SWIFT_GEHRELS 1000090 Swift-Gehrels
NAIFID_TAKAMIZAWA 1000091 Takamizawa
NAIFID_TAYLOR 1000092 Taylor
NAIFID_TEMPEL_1 1000093 Tempel 1
NAIFID_TEMPEL_2 1000094 Tempel 2
NAIFID_TEMPEL_TUTTLE 1000095 Tempel-Tuttle
NAIFID_TRITTON 1000096 Tritton
NAIFID_TSUCHINSHAN'_ 1 1000097 Tsuchinshan 1
NAIFID_TSUCHINSHAN_2 1000098 Tsuchinshan 2
NAIFID_TUTTLE 1000099 Tuttle
NAIFID_TUTTLE_GIACOBINI_KRESAK 1000100 Tuttle-Giacobini-Kresak
NAIFID_VAISALA_1 1000101 Vaisala 1
NAIFID_VAN_BIESBROECK 1000102 Van Biesbroeck
NAIFID_VAN_HOUTEN 1000103 Van Houten
NAIFID_WEST_KOHOUTEK_IKEMURA 1000104 West-Kohoutek-Tkemura
NAIFID_WHIPPLE 1000105 Whipple
NAIFID_WILD_1 1000106 Wild 1
NAIFID_WILD_2 1000107 Wild 2
NAIFID_WILD_3 1000108 Wild 3
NAIFID_WIRTANEN 1000109 Wirtanen
NAIFID_WOLF 1000110 Wolf
NAIFID_WOLF_HARRINGTON 1000111 Wolf-Harrington
NAIFID_LOVAS_2 1000112 Lovas 2
NAIFID_URATA_NIIJIMA 1000113 Urata-Niijima
NAIFID_WISEMAN_SKIFF 1000114 Wiseman-Skiff
NAIFID_HELIN 1000115 Helin
NAIFID_MUELLER 1000116 Mueller
NAIFID_SHOEMAKER_HOLT_1 1000117 Shoemaker-Holt 1
NAIFID_HELIN_ROMAN_CROCKETT 1000118 Helin-Roman-Crockett
NAIFID_HARTLEY_3 1000119 Hartley 3
NAIFID_PARKER_HARTLEY 1000120 Parker-Hartley
NAIFID_HELIN_ROMAN_ALU_1 1000121 Helin-Roman-Alu 1
NAIFID_WILD_4 1000122 Wild 4
NAIFID_MUELLER_2 1000123 Mueller 2

continues on next page

7.4. Comets 47

CALCEPH - Python language, Release 4.0.5

Table 2 - continued from previous page

Predefined Macros NAIF ID Name
NAIFID_MUELLER_3 1000124 Mueller 3
NAIFID_SHOEMAKER_LEVY_1 1000125 Shoemaker-Levy 1
NAIFID_SHOEMAKER_LEVY_2 1000126 Shoemaker-Levy 2
NAIFID_HOLT_OLMSTEAD 1000127 Holt-Olmstead
NAIFID_METCALF_BREWINGTON 1000128 Metcalf-Brewington
NAIFID_LEVY 1000129 Levy
NAIFID_SHOEMAKER_LEVY_9 1000130 Shoemaker-Levy 9
NAIFID_HYAKUTAKE 1000131 Hyakutake
NAIFID_HALE_BOPP 1000132 Hale-Bopp
NAIFID_SIDING_SPRING 1003228 Siding Spring

48 Chapter 7. NAIF identification numbers

CHAPTER
EIGHT

RELEASE NOTES

Version 4.0.5

Support the segment 19 in the SPICE kernel file.
Fix the installation with Cython>=3.1.0.
Fix the compilation of the documentation with Cmake 4.0 or later.

Version 4.0.4

Fix the calceph_gettimespan function result with non-integer time bounds in SPICE kernel files.
Support for parallel execution of the python and octave tests.

¢ Version 4.0.3

Fix a crash of the function calceph_open and calceph_open_array with some invalid SPICE kernel files
(files .tpc and .tf) on arm32v6 processors.

Add the man pages for the tools.
Replace the calls to sprintf by the calls to the fortified function snprintf.
Version 4.0.2 skipped due to an archive problem.

¢ Version 4.0.1

Fix the function calceph_open and calceph_open_array with some SPICE kernel files (files .bsp and .spk)
if the segment descriptor does not contain any segments.

¢ Version 4.0.0

Use cmake to compile the library. Binary ABI may be broken by this major change in the compilation
process. The library remains compatible at the source level: the existing application therefore only needs
a recompilation.

Add the function calceph_getidbyname and calceph_getnamebyidss.
Fix potential crash of fortran-90 interface only, on 32-bit OS, if ephemeris file does not exist.

Support frame name with any character except tab, space, comma, parenthese, equal, in the frame SPICE
kernel file (files .tf).

Fix system error messages to be thread-safe (remove strerror).
Fix memory buffer overflow if the number of constants is greater than 400 in the original JPL files.

¢ Version 3.5.5

Fix memory leaks when files are closed.
Fix heap buffer overflow (read only operation) with text SPICE kernel files.
Fix memory crash if the SPICE kernel files contain segments with a size of the directory greater than 100.

¢ Version 3.5.4

Fix the documentation about the unsupported segment 19.

49

CALCEPH - Python language, Release 4.0.5

Fix the window size if requested time is near a boundary for SPICE kernel files containing segments of
type 18, compliant with the SPICE specifications.

Fix incorrect results for SPICE kernel files containing segments of type 20.
Support the segment 14 in the SPICE kernel file.

¢ Version 3.5.3

Fix compilation error with Cython 3.0 or later.
Fix compilation error with Python 3.10 or later on some linux distributions.
Fix the tests suite with octave, due to a change of the syntax parsing by octave.

¢ Version 3.5.2

Fix a possible buffer overflow in the python interface of getfileversion.
Fix the undefined external symbol rint with visual C compiler 10.0.
Fix the redefinition of vasprintf with the environnment MinGW.

¢ Version 3.5.1

Support the incremental assignment in the text SPICE kernel file (files .tpc).

Support the relative frames in the frame SPICE kernel file (files .tf).

Fix the returned values of calceph_getconstantvs with large SPICE kernels.

Fix random crash or double-free error when meta-kernel SPICE kernel files are closed (files .mk).

Raise an error inside the function calceph_compute if center != O for the target (14,15,16,17), to conform
to the documentation.

Fix the object name Megaclite (519) from NAIFID_MAGACLITE to NAIFID_MEGACLITE.

¢ Version 3.5.0

Add the function calceph_getmaxsupportedorder, calceph_getpositionrecordindex2 and
calceph_getorientrecordindex?2.

Update config.sub and config.guess to support new processors.

Fix an incorrect result of calceph_(s)getconstant and calceph_getconstantvd with SPICE text kernel
if the current locale has a decimal separator different than the decimal point (e.g. comma).

Fix compilation warnings with gcc 11 about pointers and arrays.

Fix the installation with python 3.10 or later (PEP 632).

Fix compilation errors with the android SDK API level < 24.

Reduce the stack size of the arrays for the evaluation with C99 compilers.

Change the array size of the function calceph_getfileversion from the value
CALCEPH_MAX_CONSTANTNAME

to CALCEPH_MAX_CONSTANTVALUE, to conform to the documentation and examples.

Only C and Fortran 2003 are affected by this change : previous header file contains an invalid declaration
of the function.

Few programs may be affected by this change, as the required array has a smaller size : No buffer
overflow may appear.

¢ Version 3.4.7

Fix a decode error of the little-endian SPICE kernel files on the big-endian architectures (e.g. processor
s390x).
Fix the transmission of the flags FCFLAGS to the fortran compilers.

¢ Version 3.4.6

Fix a wrong error message about unsupported order for the segment 21.

50

Chapter 8. Release notes

CALCEPH - Python language, Release 4.0.5

Fix incorrect results for SPICE kernel files containing segments of type 21 with many records (>=100)
and improved the accuracy if segments of type 21 contain few records (<100).

Version 3.4.5

Fix a random crash of calceph_open_array if one of the file is invalid.

f90calceph_seterrorhandler now ignores the parameter userfunc, instead of the requirement to set to 0, if

the parameter type is 1 or 2. userfunc can be an empty function. It fixes compilation errors with gcc 10.1.
* Version 3.4.4

Fix a regression introduced in 3.4.3 (remove a recursion with SPICE kernel files).

¢ Version 3.4.3

Remove a recursion to read the segments of the SPICE kernel files. It reduces the usage of the stack.
Fix the installation of python package under Anaconda.

¢ Version 3.4.2

Add a missing makefile for windows system using the Visual C++ compiler.
Support SPICE kernels larger than 4GBytes.

¢ Version 3.4.1

Improve the execution time of calceph_open and calceph_open_array if the spice kernels contains a large
number of bodies.

Update config.sub and config.guess to support arm processors.
* Version 3.4.0

Add the function calceph_isthreadsafe.

Multiple threads can now access the same ephemeris descriptor if the function calceph_isthreadsafe
returns 1.

Fortran and C examples (f2003parallel.f, cparallel.c), written using OpenMP, are available in the folder
examples.

Fix an error if multiple SPICE kernels are loaded for the same objects over different time-span.
Fix the MinGW Makefiles if the variable MAKE contains spaces.
Support the segment 5 and 18 in the SPICE kernel file.

Support the euler angles for the orientation stored in a text PCK files (BODY..._POLE_RA,
BODY..._POLE_DE, BODY..._POLE_PM, BODY..._NUT_PREC_...).

Support the frame 17 (ECLIPJ2000) in the SPICE kernel file.
Add the utilities calceph_queryposition and calceph_queryorientation.

¢ Version 3.3.1

Fix the installation with python 3.7.0 or later.
Fix the installation with python and pip on Windows operating system.
Add the missing file pythonapi/src/Makefile.mingw for the environnment MinGW.

¢ Version 3.3.0

Add the functions calceph_getfileversion.

Fix a regression to open some old JPL DE format files.

Fix a compiler warning in the file util.c.

Support the segments 8, 9, 17 and 21 in the SPICE kernel file.

Check the validity of the number of constants in the original INPOP/DE files.

For the Python interface, the functions compute??? and orient??? supports now a list or numpy's array for
the time parameters.

51

CALCEPH - Python language, Release 4.0.5

¢ Version 3.2.0

Fix the creation of the dynamic library with msys/mingw on Windows.

Fix the returned value of the functions f90calceph_getconstantvd and f90calceph_getconstantvs.
Fix a compilation warning with the GNU C compilers 8.0 or later.

Support the original JPL files with TT-TDB or with a large number of constants.

Support the IAU 1980 Nutation Angles of the JPL files.

Add the NAIF identification numbers for DIA, KERBEROS, STYX and SIDING SPRING.
Add the option installnodoc to the make command.

¢ Version 3.1.0

Add the Mex interface compliant with Octave 4.0+ and Matlab 2017+.

Add the functions calceph_getconstantsd, calceph_getconstantvd and calceph_getconstantss and
calceph_getconstantvs.

Fix a compilation problem with MinGW if the terminal cmd.exe is used.

Fix a wrong function name open_array instead of open in the documentation of the Python interface.

Fix the return value of the functions calceph_orient_xxx when the unit CALCEPH_UNIT_RAD is not
provided.

The return value of the function calceph_(s)getconstant(index) is the number of values associated to the
constant.

Display a better message for the unsupported old spice kernel (NAIF/DAF)

¢ Version 3.0.0

Update the license CeCILL v2.0 to CeCILL v2.1.

Fix a decode error for SPICE kernels with a big-endian format.

Add the function calceph_gettimescale and calceph_gettimespan.

Add the function calceph_getpositionrecordcount and calceph_getpositionrecordindex.

Add the function calceph_getorientrecordcount and calceph_getorientrecordindex.

Add the function calceph_sgettimescale and calceph_sgettimespan.

Support INPOP file format 3.0 (add angular momentum due to the rotation in the binary file).
Use sphinx-doc to produce the documentation.

¢ Version 2.3.2

Fix the return value of the function calceph_getconstant if the constant name "AU" or "EMRAT" is not
available.

Fix the documentation for the fortran interface of the function calceph_prefetch.
Fix the return value of the function calceph_orient_unit if the frame SPICE kernel file is missing.

¢ Version 2.3.1

Fix the compilation warnings with the Pelles compiler.

Fix the compilation warnings with the C89 standard.

Fix the compilation warnings with the GNU C compilers.

Fix the documentation for the constant CALCEPH_VERSION_STRING.

¢ Version 2.3.0

Add the python interface compliant with python 2.6+ and python 3.
Add the preprocessor macro CALCEPH_VERSION_STRING.

Add the function calceph_getversion_str.

Add the function calceph_compute_order and calceph_orient_order.

52

Chapter 8. Release notes

CALCEPH - Python language, Release 4.0.5

Fix the return value of the functions calceph_compute_xxx when the reference frame is not available in
the spice kernel files.

The function should produce an error and return O (before the function performed no computation but it
returned 1).

* Version 2.2.5
Fix an incorrect result if CALCEPH_UNIT_DAY is provided to calceph_compute_unit and the target is
TCG-TCB or TT-TDB.
Support the numerical constants declared without parenthesis in the text kernel files (.tpc).
Support the segment 1, 12 and 13 in the SPICE kernel file.

* Version 2.2.4
Update the version number of the dynamic library.
* Version 2.2.3

Add the predefined constants for calceph version in the fortran interface.
Fix the build chain if calceph is compiled from another folder.

* Version 2.2.2
Support the compilation in the standard C89.
* Version 2.2.1

Remove debug informations that are printed when errors occur in calceph_?compute_?77.
Support the Portland compilers.
Fix the info documentation.

Report an error if no asteroid is available in an ephemeris file with the INPOP file format (instead of a
crash).

¢ Version 2.2.0

Support the new segments 20, 102, 103 and 120 in the SPICE kernel file.
Support the NAIF identification numbers.
Add the functions calceph_orient_unit and calceph_prefetch.

¢ Version 2.1.0

Fix a bug in calceph_getconstant and calceph_sgetconstant with an invalid name

Remove the null character in the name of the constant returned by the function
(f90)calceph_(s)getconstantindex when the Fortran interface is used.

¢ Version 2.0.0

Fix memory leaks in calceph_open when errors occur.

Support INPOP file format 2.0 (supports TCB ephemeris file and add asteroids in the binary file).
Add the function calceph_open_array and calceph_compute_unit.

Add the tools calceph_inspector to show details about ephemeris file.

Support SPICE kernel file (SPK with segment 2 or 3, text and binary PCK, meta kernel, basic frame
kernel).

Improve the performances.
Correct the Fortran 2003 interface for calceph_sgetconstantindex.
Add the constant 17 to get TCG-TCB from TCB ephemeris file.

¢ Version 1.2.0

Change the licensing : triple licenses to support integration in BSD software.

53

CALCEPH - Python language, Release 4.0.5

Remove explicit dependencies on the record size for DExxx.
* Version 1.1.2

Fix a compilation warning with oracle studio compiler 12.
Fix a bug with gcc on solaris in 64 bit mode.
Fix the copyright statements.

* Version 1.1.1
Fix a compilation error in util.h and a warning with the sun studio compilers.
* Version 1.1.0
Add the function calceph_seterrorhandler for the custom error handlers.
Version 1.0.3
Support the JPL ephemeris file DE423.
* Version 1.0.2

Fix memory leaks in the fortran-90 interface.
* Version 1.0.1

Support the large ephemeris files (>2GB) on 32-bit operating systems.
Fix the documentation of the function f90calceph_sopen.

Fix an invalid open mode on Windows operating systems.

Report accurately the I/O errors.

¢ Version 1.0.0

Initial release.

54 Chapter 8. Release notes

CHAPTER
NINE

REPORTING BUGS

If you think you have found a bug in the CALCEPH Library, first have a look on the CALCEPH Library web page
https://www.imcce.fr/inpop, in which case you may find there a workaround for it. Otherwise, please investigate and
report it. We have made this library available to you, and it seems very important for us, to ask you to report the bugs
that you find.

There are a few things you should think about when you put your bug report together. You have to send us a test case
that makes it possible for us to reproduce the bug. Include instructions on the way to run the test case.

You also have to explain what is wrong; if you get a crash, or if the results printed are incorrect and in that case, in
what way.

Please include compiler version information in your bug report. This can be extracted using cc -V on some machines,
or, if you're using gcc, gcc -v. Also, include the output from uname -a and the CALCEPH version.

Send your bug report to: inpop.imcce @obspm.fr. If you think something in this manual is unclear, or downright
incorrect, or if the language needs to be improved, please send a note to the same address.

55

https://www.imcce.fr/inpop
mailto:inpop.imcce@obspm.fr

CALCEPH - Python language, Release 4.0.5

56 Chapter 9. Reporting bugs

CHAPTER
TEN

CALCEPH LIBRARY COPYING CONDITIONS

Copyright 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024,
2025

CNRS, Observatoire de Paris, Observatoire de la Cote d'Azur
Contributed by

Gastineau M. , Laskar J., Manche H., Astronomie et Syst¢mes Dynamiques, LTE, Observatoire de Paris, CNRS, PSL
Research University, Sorbonne Universite

Fienga A., Observatoire de la Cote d'Azur
inpop.imcce @obspm.fr

This library is governed by the CeCILL-C,CeCILL-B or CeCILL version 2 license under French law and abiding by
the rules of distribution of free software. You can use, modify and/ or redistribute the software under the terms of the
CeCILL-C,CeCILL-B or CeCILL version 2 license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".

As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license,
users are provided only with a limited warranty and the software's author, the holder of the economic rights, and the
successive licensors have only limited liability.

In this respect, the user's attention is drawn to the risks associated with loading, using, modifying and/or developing or
reproducing the software by the user in light of its specific status of free software, that may mean that it is complicated
to manipulate, and that also therefore means that it is reserved for developers and experienced professionals having
in-depth computer knowledge. Users are therefore encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or data to be ensured and, more generally, to use
and operate it in the same conditions as regards security.

The fact that you are presently reading this means that you have had knowledge of the CeCILL-C,CeCILL-B or CeCILL
version 2.1 license and that you accept its terms.

57

mailto:inpop.imcce@obspm.fr
http://www.cecill.info

	Introduction
	Installation
	Instructions
	Using pip
	Using Anaconda

	Library interface
	A simple example program
	Modules
	Types
	Constants

	Multiple file access functions
	Time notes
	Thread notes
	Usage
	Functions
	calcephpy.CalcephBin.open
	calcephpy.CalcephBin.prefetch
	calcephpy.CalcephBin.isthreadsafe
	calcephpy.CalcephBin.compute
	calcephpy.CalcephBin.compute_unit
	calcephpy.CalcephBin.orient_unit
	calcephpy.CalcephBin.rotangmom_unit
	calcephpy.CalcephBin.compute_order
	calcephpy.CalcephBin.orient_order
	calcephpy.CalcephBin.rotangmom_order
	calcephpy.CalcephBin.getconstant
	calcephpy.CalcephBin.getconstantsd
	calcephpy.CalcephBin.getconstantvd
	calcephpy.CalcephBin.getconstantss
	calcephpy.CalcephBin.getconstantvs
	calcephpy.CalcephBin.getconstantcount
	calcephpy.CalcephBin.getconstantindex
	calcephpy.CalcephBin.getfileversion
	calcephpy.CalcephBin.getidbyname
	calcephpy.CalcephBin.getnamebyidss
	calcephpy.CalcephBin.gettimescale
	calcephpy.CalcephBin.gettimespan
	calcephpy.CalcephBin.getpositionrecordcount
	calcephpy.CalcephBin.getpositionrecordindex
	calcephpy.CalcephBin.getpositionrecordindex2
	calcephpy.CalcephBin.getorientrecordcount
	calcephpy.CalcephBin.getorientrecordindex
	calcephpy.CalcephBin.getorientrecordindex2
	calcephpy.CalcephBin.close

	Error functions
	Usage
	calcephpy.seterrorhandler

	Miscellaneous functions
	calcephpy.getmaxsupportedorder
	calcephpy.getversion_str

	NAIF identification numbers
	Sun and planetary barycenters
	Coordinate Time ephemerides
	Planet centers and satellites
	Comets

	Release notes
	Reporting bugs
	CALCEPH Library Copying conditions

